医疗影像,提高AI深度学习效率

日期:2019-08-08编辑作者:科技视频

原标题:提高AI深度学习效率|清除"暗"数据为首要任务

“AI 医疗影像”:智慧医疗突破口

图片 1

“从数量上讲,超过80%的医疗数据来自医学影像数据;从多样性上来讲,多模态影像、病理、检验、基因及随访信息等影像数据的种类繁多,高性能计算多层神经网络模型能够应用在影像数据;此外,影像的数字化及报告的结构化也确保了数据最真实可用。”在近日举行的“智慧未来:医疗人工智能峰会”上,汇医慧影CEO柴象飞对“AI 医疗影像”充满信心:“医学影像天生适合互联网 大数据 人工智能。”

想要将某个领域的发展继续推进,有时候必须停下来看看现有的状况,进行策略性整理和分析,才能订出未来发展的大方向。医疗领域的发展也是如此,在医院收集的数十亿笔病例中,包括CT图、X光图、病理图等数子化医疗记录,我们为了要发展精准的医疗科技,近几年科学家希望能通过人工智能的技术在这些数据中找出核心关键。

对此,从事医学影像、肿瘤放射以及生物信息方面的研究超过20多年的斯坦福大学终身教授、斯坦福大学医学物理部主任邢磊认为,将来每个放射科医生手机或电脑终端都应该有一个智能分析决策的APP,“人工智能将扮演辅助分析决策的角色”。

来自美国斯坦福大学(Stanford University)博士研究员Leon Bergen在TRANS Conference 2018论坛上表示,医疗机构现有的数据将会是未来数字医疗发展的重要资料库,我们通过计算机建模和实验来研究语言学方法,在语言分析过程中清除不相关的资料。拥有一个有效且完整的医疗数据库,必须先清除医疗资料库中的暗数据,才能进一步分析,并提供医疗人员正确的决策方向。

自2012年深度学习技术被引入到图像识别数据集ImageNet之后,其识别率近年来屡创新高,并且在某些领域达到或超过人类水平。深度学习技术加上医疗影像领域积累多年的数据,正在给这一领域带来令人惊喜的突破。

图片 2

斯坦福的研究人员一项发布在Nature上的研究显示,他们用卷积神经网络(CNN,深度学习一个最广泛的应用)做皮肤癌诊断,与21位皮肤科医生对比测试,结果所测的精确度与人类医生相当。另有一项利用CNN对糖尿病视网膜病变的诊断,结果显示,其算法的性能与眼科医生的水平一致。

目前医疗护理流程图、医生诊断记录、放射科报告、肺部疾病报告的数字化医疗数据都可以透过AI进行分析。研究员Bergen表示,在进行数据分析之前,整理杂乱且无法直接使用的暗数据(Dark Data)是相当重要的一点。技术人员提供整理过的数据给AI系统进行深度学习,在这过程中包含了收集大量数据、清除暗数据、训练神经网络和通过网络内容进行分析。

深度学习技术几乎是目前医学影像领域效果最好的技术。“深度学习及强化深度学习,代表目前新潮的技术,它们能解决很多以前不能解决的问题,把医疗AI推向新的高潮。”邢磊说。

Bergan指出,在训练AI系统的深度学习过程中,研发人员必须不怕出错,在不断试验的过程当中,神经网络会依循每一次的结果改进,并给予不同以往的产出。研发人员必须评估神经网络产出的结果,并调整网络的学习数据。

邢磊还举出汇医慧影的例子:汇医慧影已经在打造一个智能医疗影像平台,并已取得了惊人的进展。

图片 3

柴象飞介绍说,该公司正在利用网络的层级模拟了人脑对图像的认识过程。人脑对图像会分为如颜色、形状、抽象识别等五部分进行处理,因此在不同的区域,模拟认知的过程的算法也会不一样。

举例来说,当系统判断病患有67%的死亡率,数据人员就必须依照最后病患实际的存活状况来调整系统的数据设定。通过真实的结果与事先预测之间差异的反馈,才能不断提高之后的预测精准度。

“我们在实践中发现,优质、大量的数据的积累;高性能计算环境;优化的深度学习方法;三者资源配齐就会构建不断提高的状态的模型,这正是人工智能的魅力所在。”柴象飞说。

以往数据似乎就是片段的资讯,然而现在图形数据已经可以透过强大的图形处理器(GPU),提供既快速又系统化的分析。不过在电脑断层扫描(CT)的分析上,有时候还会出现AI分析的结果与医生的判断有出入。此时,就必须比对神经网络、医生诊断和CT图片上的各种差异。

目前医学影像已经成为人工智能在医疗应用中最热门的领域之一。据统计,2016年以来,已有近20家人工智能 医学影像公司先后获得投资。

图片 4

中国中国医学装备协会理事长、原卫生部规财司司长赵自林对此并不意外。他认为,人工智能在提高健康医疗服务的效率和疾病诊断准确率等方面上“具有天然优势”,在深度学习算法和大数据技术等的强力推动下,各种旨在提高医疗体验以及降低医疗成本的先进应用正在应运而生,这其中包括医疗诊断、辅助治疗与健康管理、药物研发等。

对于人工智能是否取代人类,Bergen 表示,许多评论都认为在未来几十年之内,AI很有机会在很多领域的分析胜过人类,但要完全取代人类还是有困难的!返回搜狐,查看更多

“抛开政府背书,人工智能也正迎来技术创新红利,尽管人工智能还处于技术创新期,但人工智能的基础已经充实。”赵自林说,云计算把信息基础云化,人工智能算法响应速度更快;大数据计算过程中积累了大量数据,依托数据为基础的分析和精准判断决策成为可能。除此之外,深度学习的发展为人工智能的突破贡献了重要力量:“计算机视觉、语音听觉、自然语言处理技术上的突破,计算机具备了人的双眼的能力,甚至准确度上已经超过了人本身。”

责任编辑:

此外,医疗健康的需求端急剧上升和供给端的严重不足也正在驱使人工智能等技术与医疗健康行业的结合。英特尔医疗与生命科学集团亚太总经理李亚东指出,人口老龄化以及慢性病问题带来的一系列医患问题,都在呼唤着技术创新这条出路。

“需要创新才能够解决这些固有的存量问题和正在加剧的新的增量问题。单纯的按照过去的传统的方法,通过单纯增加供给,或者限制需求来解决这个问题是走不通的。”李亚东指出,人工智能给医疗行业打开了一扇窗。

国际核能院院士、清华大学计算机系教授张勤对AI 医疗提出这样的畅想:“把院士的‘看病本事’放到一台电脑里,通过联网为基层医院‘赋能’,让基层或社区达到三甲医院的院士水平,这就是我们人工智能追求的境界,这就是需要落地的东西。”他表示,如果能做到这一点,医疗资源分配不均的问题也会迎刃而解。

相比业内人士,投资圈人士相对冷静,在峰会现场,有投资者发问:依靠医学影像与病例病史等资料的整合,来做出综合的智能分析决策,现在处于何种阶段?

邢磊认为“仍处于非常原始的阶段”。

“现在医院对病人进行系统的综合的智能分析决策做得还不够,比如今天拿到一名病人的核磁结果就分析一下,但实际上,这名病人也许在十年前也留下了相关的核磁、CT及病例病史等结果,这些历史数据是否能够整合呢?”邢磊认为,如果有了全面的智能分析决策之后,效果会好的多。

“当然,这方面开始‘想’的人多,做的人少。因为实施起来有很大的难度。”邢磊表示,首先必须先有技术,医生不可能自己写程序,而且得有大量的临床数据证明这样的做法的有效性,大家才会接受。

邢磊表示,这是一个渐进的过程,借助AI会使机械式的非精准医疗渐渐消失,但是把所有医疗工作完全交给机器还不太可能,“至少还有很漫长的路要走”。

本文由精准三肖六码发布于科技视频,转载请注明出处:医疗影像,提高AI深度学习效率

关键词: 精准三肖六码 管家婆免费

智能家居面临安全忧虑,迅速崛起的智慧城市及

原标题:【网安智库】快速崛起的灵性城市及其相关风险 物联网的升高加速了科学和技术融合生活的进程,使大伙儿...

详细>>

旗舰级交互体验,star值得买啊

原标题:旗舰级交互体验 一句话Bixby帮您解决一切 问题: 为什么? 在智能AI愈来愈昌盛的后天,手提式有线话机智能...

详细>>

任性的特朗普

原标题:任性的特朗普,苹果的新难题 摘要: 事实上,很多专业人士认为苹果回到美国生产不切实际的真正原因在于...

详细>>

OS欲借新芯片组发力,高通骁龙Wear

原标题:Wear OS欲借新芯片组发力 与Apple Watch再争高下 原标题:高通骁龙Wear 3100来了,能为“安卓系”带来曙光吗 高...

详细>>